Binaural Directionality III: Directionality that supports natural auditory processing

Jennifer Groth, MA

ABSTRACT
The differences and similarities between sounds arriving at each ear can be used to enhance or suppress environmental sounds at will, and lets us easily shift our attention among these sounds. Depending on what the sound of interest is at any particular moment, we innately use different listening strategies, and we unconsciously change between a strategy that relies on environmental awareness and one that relies on the ear with the best representation of the interesting sound. Binaural Directionality III provides the ultimate balance for supporting natural hearing: a signal-to-noise ratio improvement similar to bilateral directional microphones and a significant benefit in ease of listening compared to other directional microphone strategies. This paper reviews the rationale for Binaural Directionality III and how it achieves this balance.

A supercomputer can beat a human at chess but does it know what that human would like to eat for lunch? A computer that has followed the preferred eating patterns of a person over time could probably make a good guess, but would still guess incorrectly much of the time. There are many examples of how intelligence built into computers and smart devices is learning our routines and attempting to make our lives easier. Hearing aids are no exception. While most of the processing capabilities in hearing aids are dedicated to amplifying and treating the sound, there are also algorithms that control the sound processing based on observations of the acoustic input. And just like the super computer and eating patterns, a hearing aid can make the wrong guess with regard to what signal a user might want to hear. These wrong guesses can make it harder for users of hearing aids to hear what they want to hear. This is why ReSound has for a decade focused on how technology can be leveraged to let hearing aid users hear better in noise, but still hear all sounds around them similar to how a normal hearing person would hear.

One type of automatic control that every modern hearing aid has is for directional processing. This refers to decision-making by the hearing aid system to change the microphone mode of the hearing aid such that it provides an omnidirectional or a directional response. With automatic control of the microphone mode, the hearing aid wearer can potentially benefit from directional processing without having to recognize when it would be beneficial or manually select the directional mode. But just as a computer may not know what you want for lunch, a hearing aid will not always know whether directional or omnidirectional processing is best for a given situation. This is because hearing aid intelligence cannot know the wearer’s intent; what sounds are important to the individual at any given moment are individual and not predictable based only the acoustic environment. Applying directionality in some situations may prevent the user from hearing sounds they actually want to hear.

How can directionality and control of directionality be accomplished with respect for the intent of the hearing aid wearer? Three factors are important in providing a seamless, natural listening experience that offers the benefits of directionality without its drawbacks. First, the decision-making algorithm is of great consequence. The rationale for selecting a particular microphone mode affects what information ultimately is provided to the user. Second, the analysis of the acoustic environment is critical. It provides the input for the decision-making about how to adapt the hearing aid processing. Finally, the directional processing itself is important. It should provide a better signal-to-noise ratio but not create issues with audibility or sound quality.

ReSound Binaural Directionality III was developed with careful attention to each of these three factors. Based on an accurate analysis of the acoustic environment, Binaural Directionality III uniquely applies directional microphone technology to support different listening strategies, allowing the user to focus on the sounds that are important to them. Depending on the particular microphone mode, dedicated technologies serve to provide the best listening experience. Natural sound quality is central to Binaural Directionality III, and Directional Mix ensures transparent transitions between microphone modes. In addition Spatial Sense preserves the important localization cues that contribute to spatial hearing and the most true-to-nature sound quality. Finally, the directivity patterns of the different microphone modes
are painstakingly designed, taking the acoustic properties of the head into account, to ensure that the listener can effortlessly tune in to sounds from the environment. Directionality optimizes the sensitivity patterns to achieve the best combination of speech from the front and spatial awareness.

WHEN TO SWITCH? THE IMPORTANCE OF THE RATIONALE

There is no doubt that directionality in hearing aids is a measurably effective way to boost the SNR, and thus speech recognition, in noisy situations1,4,5. Improvements of typically 4 to 5 dB have been demonstrated in laboratory settings when the noise source is spatially separated from the speech 6 and the speech is coming from the front and is located near the listener.7 However, in many daily interactions, listeners need to pay attention to sounds coming from different locations. Much of any individual’s active listening time during the course of a day will not be spent facing what they want to hear. Cord et al.8 found that hearing aid wearers judged the signal of interest to come from another direction than in front more than 30% of the time. In this study, participants also indicated that the direction of sound sources was “multiple” in some listening situations, which indicated that the sound of interest either moved, or that there were more target sounds, or both. This means that a system that automatically switches to directionality on both ears in noisy situations—even if the system also includes speech detection for reducing audibility of desired sound sources much of the time. Although people constantly and naturally turn their heads toward the sound of interest, real-world environments are unpredictable, and salient sounds can come from any direction at any time. Research on turn-taking in conversations across 10 different world languages shows that talkers switch turns in less than half a second regardless of culture. Orientation is required to keep up with this behavior as a listener.9 Working memory for an individual is limited, and if resources are spent on searching and orienting behaviors, fewer are available for actual listening and understanding. Considering this, using directionality can also be disadvantageous, as it cannot provide the same audibility and awareness of surrounding sounds that people with normal hearing naturally experience.

For nearly a decade as the hearing aid industry focused on developing directional microphone technology that maximizes SNR benefit in various listener-controlled environments, ReSound has followed a unique path in applying directional microphone technology. Inspired by investigations that explored real-life usage and preferences for omnidirectional and directional microphone modes, ReSound researchers worked with external partners to study and validate a different approach to applying directionality that would allow hearing aid users to hear better in noise without rob them of awareness of their surroundings.9 Because listeners rely on the ear with the best representation of what they want to hear in noisy surroundings, one idea that was explored was to provide directionality on one ear, and omnidirectionality on the other. It was demonstrated that this provides directional benefit that is nearly equivalent to directionality on both ears10, while the omnidirectional ear allows the listener greater audibility or awareness than the directionally focused ear.11 Amazingly, the different information from the two ears fit with an asymmetric microphone strategy was perceived as one integrated auditory image, and allowed the listener to focus on sounds, monitor sounds, and shift attention to different sounds at will. Issues with this microphone mode fitting strategy were that some situations could be encountered where bilateral directionality would provide slightly more benefit, and that speech of interest to the listener might occur on the side of the directional ear and not be sufficiently audible. Eventually, the development of ear-to-ear communication on the ReSound 2.4GHz digital wireless platform enabled two hearing aids to work as a system and to solve these issues.

ReSound continually refines its approach to using directional technology in a way that considers how listeners will experience it in real-life. A hearing aid user is not just two ears. Therefore, the entire human auditory system is considered in the design, from the acoustic effects of the shape and location of the external ears on the head to the power of binaural processing by the brain. The ultimate goal is not to give hearing aid wearers “better than normal” hearing in restricted situations. It is for hearing aid wearers to effortlessly engage in auditory social behaviors in the same way as a normal hearing individual, and thereby have a natural and transparent hearing experience.

As the name implies, Binaural Directionality III is the third generation of the microphone mode control strategy that meets the goal of providing a natural hearing experience. Like Binaural Directionality II12,13,14,15,16 it uses the microphone configuration of two hearing instruments to support binaural, sound processing by the brain. It is the only truly binaural strategy, taking advantage of scientifically proven listening strategies incorporating acoustic effects and auditory spatial attention strategies17,18,19,20.

Binaural Directionality III uses 2.4 GHz wireless technology to coordinate the microphone modes between both ears for an optimal binaural response. Front and rear speech detectors on each hearing instrument estimate the location of speech with respect to the listener. The environment is also analyzed for the presence or absence of noise. Through wireless transmission, the decision to switch the microphone mode for one or both of the hearing aids is made based on the inputs received by the four speech detectors in the binaural set of devices. The possible outcomes in 4 different acoustic environments, ReSound has Spatial Sense, a bilateral directional response, or an asymmetric directional response. These outcomes were derived from external research regarding the optimal microphone responses of two hearing instruments in different sound environments.

ENVIRONMENTAL ANALYSIS: THE BEST SPEECH RECOGNITION IN NOISE

Hearing aids have become marvels that adapt the amplification they provide to take into account the acoustic environments in which they are used. All of these hearing aids, regardless of manufacturer, attempt to recognize sounds that are likely to be either important or not important to the user. The way this is accomplished is defined by each manufacturer, although all systems will at least try to identify environments that are quiet, ones that contain speech, and ones that contain noise. Some may also attempt to further characterize types of noise or to identify music. Because decisions about how hearing aid settings should be adapted depend on how the environmental classification system identifies different sounds, it is of great interest to consider how well the classification matches up with well-defined environments. This can give an indication of how likely the system is to make changes appropriately.

The ReSound environmental recognition system uses sophisticated speech and noise detection algorithms based on input level, frequency content and spectral balance, as well as the temporal properties of the incoming sound to determine the nature of the acoustic surroundings. Furthermore, the classification does not occur according to stringent predetermined criteria, but rather on the basis of probabilistic models. To examine the accuracy of this system compared to other hearing aid environmental classification systems, the most advanced hearing aid from each of six manufacturers was placed in an Omnitronics Aurical test chamber and exposed to different, well-defined sound sources for periods of 2 to 22 hours. The sound recordings were looped during the exposure period to ensure consistent real-world input. After each period of exposure, the hearing aid was connected to the manufacturer’s fitting software, and the result of the environmental classification was read out in the data logging screen.

The environmental sounds consisted of the following. All sound recordings except “Quiet” are found as part of the sound library in the Otometrics Otosuite software:

- Quiet-no input
- Noise: Hand-mixer at 75 dB SPL
- Noise: White noise at 75 dB SPL
- Noise: Speech babble at 75 dB SPL
- Speech-in-noise: conversation at 75 dB SPL
- Speech-in-noise: conversation in train station background at 75 dB SPL
- Speech-in-noise: conversation in party noise background at 75 dB SPL
- Pop music at 65 dB SPL
- Classical music at 65 dB SPL

All systems identified quiet, speech, and white noise with a very high degree of accuracy. At least 96% of the hours of exposure in these environments were classified correctly across manufacturers. Some differences were noted for the speech babble and hand mixer noises, as shown in Figure 1. One system identified 60% of the hours exposed to the hand mixer noise as “speech-in-noise”, while another classified 96% of the hours exposed to speech babble as music.
An interesting finding was that the systems differed significantly in terms of which noise background caused them to be inaccurate in the classification. All were at least 75% accurate in identifying speech-in-noise for the “party” and “train station” background noise, while the “café” and “supermarket” background noise posed difficulties. The competing noise for both “café” and “party” is people talking in the background. However, “café” also includes the clinking of cups and saucers as would be typical in this environment. The classification mistakes that were made in this environment were to assign many of the hours to the “speech” category. It may be that the systems were fooled by the transient and modulating sounds caused by the cups and saucers, wrongly identifying this as speech with no competing noise.

The results from the “supermarket” background were quite inaccurate for the four systems that have a music category in their classification system. This background includes some soft music along with other typical supermarket sounds. Of the four systems with music classification, two assigned 100% of the hours exposed to the music category, one 84% of the hours, and one 37%. Taken together with the inaccuracy of the classification when these hearing aids were exposed to music (Figure 3), this calls into question the relevance of hearing aids identifying speech in noise environments.

SOUND RECOGNITION IN THE BACKGROUND

The presence of music in an environment can lead one to expect better speech recognition in noise performance. However, the results indicate that noticeable automatic changes indicate a malfunctioning device. Therefore, ReSound strives to design automatic functionality so that it is transparent for users. They should not know when the hearing aids are in which mode. They should just be able to hear and focus on what they want. This guiding principle is part of the reason why ReSound hearing aids have been top-rated for sound quality.

BALANCING DIRECTIONAL BENEFIT WITH A NATURAL LISTENING EXPERIENCE

It is well-accepted that one set of hearing aid parameters will not meet the listening needs of an individual in all conditions. This is particularly true for multi-memory hearing aids as well as automatic adaptation of hearing aid features. While the goal of fitting prescriptions is to provide amplification for optimum speech understanding while ensuring comfort for loud sounds, hearing aid users will still want to enhance or diminish different aspects of the amplified sound in different situations. One simple example is that a hearing instrument wearer might desire more volume than prescribed in an important meeting at work, but wish for less volume when relaxing with the newspaper on the train ride home several hours later. Automatic transitions among hearing aid settings is a way to account for situational preferences in a way that is effortless for the user. While this sounds ideal in theory, it may not be so in practice. Hearing aids that make abrupt or noticeable transitions in sound processing can be distracting and annoying. Some users may even think that noticeable automatic changes indicate a malfunctioning device. Therefore, ReSound strives to design automatic functionality so that it is transparent for users. They should not know when the hearing aids are in which mode. They should just be able to hear and focus on what they want. This guiding principle is part of the reason why ReSound hearing aids have been top-rated for sound quality.

IMPORTANCE OF THE DIRECTIONAL PROCESSING

The goal of providing a transparent listening experience has implications for the sound processing in the hearing aids. Dual microphone directionality is an example of sound processing that can draw attention to itself when it is activated and deacti-
vated automatically. Because of the close spacing of the micro-
phones in hearing aids relative to the wavelengths of low fre-
quency sounds, directional processing will tend to cancel low
frequencies regardless of the direction of arrival of the sound.
The resultant low frequency roll-off in the response creates a
tiny sound quality that is different than the sound quality of
an omnidirectional response. If the roll-off is compensated by
boosting the low frequency gain, the noise floor of the device
is also boosted. This can make the directional mode sound nos-
ier than the omnidirectional mode. This means that no matter
which approach is taken, the directional response will have a
different sound quality than the omnidirectional response.
The user may perceive this difference and may even be baffle-
med by it. One way to circumvent this sound quality issue is to
apply directional processing only to the high frequency portion
of the input. This is what Directional Mix does, and it provides
an equivalent sound quality between directional and omnidirec-
tional microphone modes.

Given that directionality is the only proven technology to im-
prove speech understanding in noise10 the “more-is-better” ap-
proach of maximizing directionality across frequencies might
lead one to expect better speech recognition in noise perfor-
mance with full directionality than with Directional Mix. On the
other hand, articulation index theory would predict a negligibl
 difference between the two types of processing, as added au-
dibility in the lower frequencies should represent only a modest
contribution to intelligibility11. Figure 4 shows results from
a clinical investigation which supports the latter view12. In
this study participants were fit with either open or occluding
fittings and varying settings of Directional Mix. Speech recognition
in noise was assessed for all conditions. Regardless of the Direc-
tional Mix setting or whether the fittings were open or occlud-
ing, the directional benefit was significant compared to omni-
directional processing (Figure 4). For those with open fittings, the SNR
improvement compared to omnidirectional was the same for all Directional Mix settings. This was an expected finding as the open fitting allows low frequency sound to enter the ear canal that will be audible to individuals with mild hear-
ing level thresholds in the low frequencies. This naturally limits the
potential directional benefit that can be provided in the low
frequencies, and is consistent with other reports of directional
benefit in open-fit hearing aids.13 14 15 For the participants with
occluding fittings, increasing the Directional Mix setting yielded
incrementally better speech recognition in noise scores as Di-
rectional Mix was increased. For this reason, the Directional Mix
setting is prescribed based on hearing loss to ensure the best
balance between maximizing directional benefit and transpar-
ent sound quality between microphone modes. These findings
support that providing directionality in the frequency area with
the most crucial speech information makes the biggest differ-
ence in SNR improvement.

OMNIDIRECTIONAL IS ALSO A KIND OF DIRECTIONAL

It is not uncommon to talk about directional and omnidirec-
tional microphones as if they somehow are opposites. How-
ever, this is not the case. The terms describe the spatial
directivity patterns of each type of microphone. A directional
microphone amplifies sound coming from a particular direc-
tion more than sounds coming from other directions, while
an omnidirectional microphone amplifies sounds equally re-
gardless of which direction they come from. Directional micro-
phone systems in modern digital hearing aids are usually dual
microphone systems, where two omnidirectional microphones
are positioned on the device, and digital delays are applied to
one of the microphones to create the desired spatial directivity
patterns. Virtually any type of directional patterns can be cre-
a ted with this technology, including omnidirectional patterns
that is desired.

But what happens to spatial directivity patterns when a hear-
ing aid is worn? Figure 5 shows the spatial directivity patterns for
an omnidirectional microphone measured on the head. Low
frequencies travel easily around an obstacle such as a human
head with little attenuation. They are quite omnidirectional
even with the hearing aid placed on the right ear, meaning that
there is little attenuation of those frequencies regardless of di-
rection of arrival. However, for high frequency sounds arriving
from the left side, there is a great deal of attenuation caused by
the head shadow. While the head shadow effect is helpful for
both localization in quiet surroundings as well as for helping
us hear better in noise, the Binaural Directionality III strategy
seeks to balance access to an improved SNR with access to
sounds in the surroundings. This means that the head shadow
effect is in one way counterproductive when the hearing aid mi-
crophones have switched to an asymmetric mode. It will result
in “blind spots” where some sounds from certain directions will
have reduced audibility. While the head shadow effect is highly
desirable on the left side, it can completely undo any spatial
directivity response would be desirable on the opposite ear to maximize access to sounds in the surroundings.

Figure 4: Directional benefit as determined by speech recognition in noise testing10 is enhanced by amplification in the high frequencies. For those with more severe hearing losses and occluding fittings, added incrementality benefit is observed as the Directional Mix is increased. For this reason, Directional Mix is prescribed for the individual.

Figure 5: Spatial directivity patterns of an omnidirectional microphone measured on the right ear of a REMAB. The patterns in the high frequencies are greatly af-
fected by the head shadow effect such that the response is not omnidirectional.
A NEW METHOD TO OPTIMIZE THE SYSTEM

As discussed previously, the human auditory system relies on inputs from both ears. Binaural benefits are derived by comparing and integrating the differing inputs from the two ears. In designing a directional system that supports natural hearing processes, it therefore makes sense to first examine the combined acoustic effects of the two ears and their placement on the head. This information can then be used as a reference for benchmarking the system design. Hearing care professionals are familiar with the Directivity Index (DI), a metric which quantifies the relative amplification of sounds originating from a zero-degree azimuth to sounds arriving from other azimuths. The DI is commonly used to describe the effect of directional processing in hearing aids. However, the DI is a poor indicator of how binaural effects will contribute to improvements in SNR because it describes the characteristics of only one device. Furthermore, the DI is only an indication of how SNR can be improved for sounds coming from in front of the listener. Because the rationale of Binaural Directionality III is to allow listeners to use either a better ear or awareness listening strategy, it is also crucial to include a measure of awareness in evaluating the system design.

To assist in creating the optimum design, ReSound researchers proposed a method to acoustically map out the spatial patterns combining the left and right ears and, based on the directional patterns of the two ears, quantify both how the system contributes to improved SNR as well as situational awareness. Essentially, two new DI concepts were introduced. One is to include the effects of both ears in calculating the DI rather than one ear alone. The other is to calculate a sort of “reverse” DI that also includes both ears, thereby providing an indication of environmental awareness. Figure 6 illustrates these concepts for open ears on the head. Note how the “Better ear index,” which is the binaurally calculated DI, provides better SNR enhancement than the single ear DI. By the same token, the “Situational awareness index” is much lower than the single ear DI, illustrating how binaural acoustic effects can provide greater audibility for sounds regardless of direction of arrival. These two indices have served as a benchmark for design of the spatial patterns for Binaural Directionality III. The design goal was to maximize the Better ear index, while preserving a Situational awareness index that captures differences in time of arrival of sounds at each ear (Interaural Time Difference – ITD), differences in level of sounds arriving at each ear (Interaural Level Difference – ILD) as well as spectral “pinna” cues. Head movements also contribute as the auditory system quickly analyzes how the relationships among these cues change. Disrupting any of these cues interacts with spatial hearing, and it is known that hearing aids may distort some or all of them.

Spatial Sense is a unique Surround Sound by ReSound technology that accounts for the three hearing instrument-related issues that can interfere with spatial cues:

1. Placement of the microphones above the pinna in Behind-the-Ear (BTE) and Receiver-in-the-Ear (RIE) styles removes spectral pinna cues ([2],[3]).
2. Placement of the microphones above the pinna in BTE and RIE styles distorts ILD ([2],[3]).
3. Spatially interacting Wide Dynamic Range Compression in two bilaterally fit hearing instruments can distort ILD ([2],[3]).

Spatial Sense is modeled after the natural ear including pinna restoration for an accurate estimate of ILM, wireless exchange of information to emulate the crossing of signals between ears, and the correction of ILM based on the ear with the largest sound-field signal to emulate inhibitory effects of auditory efferent feedback. With preserved localization cues, Spatial Sense adds to the natural listening experience and superior sound quality provided by Surround Sound by ReSound technologies.

SUMMARY

A natural hearing experience depends on the brain receiving distinct signals, which can be compared and contrasted to segregate the stream of acoustic information into a meaningful picture of the sound environment. The differences and similarities between sounds arriving at each ear can be used to enhance or suppress environmental sounds at will, and lets us easily shift our attention among these sounds. Depending on what the sound of interest is at any particular moment, we innately use different listening strategies; and we unconsciously change between a strategy that relies on environmental awareness and one that relies on the ear with the best representation of the interesting sound. A person changes their listening strategy from “awareness” to “better ear” when they lean closer to the sound they want to hear, turn one ear more toward the sound, or cup their ear with a hand. Most advanced hearing aids use technology to “short circuit” these natural hearing strategies in an attempt to enhance a particular sound that is determined by artificial intelligence to be the most important. In stark contrast, Binaural Directionality III uniquely applies directional microphone technology to support both the awareness and better-ear listening strategies. Ear-to-ear wireless communication facilitates an analysis of the environment, which is used to automatically select the optimum of 4 bilateral microphone modes to support both listening strategies. Depending on the particular microphone mode, dedicated technologies serve to provide the best listening experience. Natural sound quality is central to Binaural Directionality III, and Directional Mix ensures transparent transitions between microphone modes. In addition, Spatial Sense preserves the important localization cues that contribute to spatial hearing and the most true-to-nature sound quality. Finally, the intricacy of the different microphone modes is painstakingly designed, taking the acoustic properties of the head into account, to ensure that the listener can effortlessly tune in or tune out the sounds around them. Binaural Directionality III optimizes the sensitivity patterns to achieve the best combination of speech from the front and spatial awareness. Binaural Directionality III provides the ultimate balance for supporting natural hearing: a signal-to-noise ratio improvement similar to bilateral directional microphones and a significant benefit in ease of listening compared to other directional microphone strategies.

SUPPORTING SPATIAL HEARING

Spatial hearing refers to the listener’s ability to segregate the incoming stream of sound into auditory objects, resulting in an internal representation of the auditory scene, including the aspect of spaciousness. An auditory object is a perceptual estimate of the sensory inputs that are coming from a distinct physical item in the external world. For example, auditory objects in a kitchen auditory scene might include the sound of the refrigerator door opening, the sound of the water running in the sink, and the sound of an onion being chopped. The ability to form these auditory objects and place them in space allows the listener to rapidly and fluidly choose and shift attention among these objects; Furthermore, the formation of an auditory scene provides a natural-sounding listening experience.

The auditory system must construct this spatial representation by combining multiple cues from the acoustic input. These include differences in time of arrival of sounds at each ear (in-
REFERENCES

Manufacturer according to FDA:

ReSound North America
8001 E. Bloomington Freeway
Bloomington, MN 55420
USA
1.800.248.4327
resoundpro.com

ReSound Government Services
8001 E. Bloomington Freeway
Bloomington, MN 55420
USA
1.800.392.9932
resound.com/governmentservices

Manufacturer according to Health Canada:

ReSound Canada
2 East Beaver Creek Road, Building 3
Richmond Hill, ON L4B 2N3
Canada
1.888.737.6863
resoundpro.com

© 2020 GN Hearing A/S. All rights reserved. ReSound is a trademark of GN Hearing A/S. Apple, the Apple logo, iPhone, iPad and iPod touch are trademarks of Apple Inc., registered in the U.S. and other countries. App Store is a service mark of Apple Inc. Android and Google Play are trademarks of Google Inc. The Android robot is reproduced or modified from work created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution License. Dolby and the double-D symbol are registered trademarks of Dolby Laboratories. The Bluetooth word mark and logos are registered trademarks of Bluetooth SIG, Inc.