Evidence for clearer, fuller and richer sound quality with ReSound LiNX Quattro

Charlotte T. Jespersen, MA, Brent Kirkwood, PhD, Jennifer Groth MA

ABSTRACT
Sound quality is important to hearing aid users. As hearing aids become more advanced and sound processing capabilities continue to improve, focus on providing superior sound quality is an increasing concern of hearing aid manufacturers. ReSound LiNX Quattro is a premium hearing aid built on a new platform that provides advances in audio quality. This paper describes how structured methodology was used to document how the sound quality of ReSound LiNX Quattro for both everyday listening and streaming compares to other premium hearing aids. As a supplement to informal subjective reports from hearing aid users, this approach provides strong evidence for the fuller and clearer sound that gives users a richer listening experience with ReSound LiNX Quattro.

Both hearing aid users and hearing care professionals (HCPs) have high expectations about hearing aid sound quality. Therefore, it is important for hearing aid manufacturers to consider sound quality as one of the basic consumer requirements to hearing aids in the product development process. This is complicated, as there is no consensus among HCPs or hearing aid users as to what “sound quality” means or when it is achieved. It is easy to know if a requirement that a product is manufactured in 4 colors is met, or that a requirement of maximum gain is met. But how do you know if the requirement of superior sound quality is met?

The first step in evaluating sound quality is to define it. At ReSound, our definition of sound quality for hearing aids has objective and subjective components. We call the objective component “transparency.” By this it is meant that the sound reproduced by the hearing aid is acoustically as similar as possible to the original sound. It is possible to quantify how transparent the hearing aid is objectively with measures of acoustic fidelity. We call the second component of sound quality “clarity.” This is a perceptual construct, requiring listener judgment. When a hearing aid user experiences clarity, our premise is that this relates to low cognitive effort in processing the sound. By design, hearing aids change the sound in ways that disturb transparency as they aim to compensate for issues associated with hearing loss. The most basic of these is frequency shaping to provide audibility at frequencies most affected by the hearing loss. Most other signal processing in hearing aids and the way hearing aids are fit to the individual user can also detract from the acoustic transparency of the device. However, clarity may still be experienced subjectively by users even when the hearing aids are not completely transparent. Part of the challenge of developing – and fitting – hearing aids is finding the optimum balance of transparency and clarity that the user will perceive as excellent sound quality.

EVALUATING SOUND QUALITY
With a working definition of sound quality, it is possible to devise ways to evaluate it. As mentioned, the transparency aspect of sound quality can be captured with technical measurements. For ReSound LiNX Quattro, technical improvements and their effects on transparency are discussed in a companion paper. In this paper, we focus on evaluation of the clarity dimension of our definition of sound quality. As part of product development at ReSound, users participate in extensive trials and various outcomes are measured. These users also provide subjective feedback on their experiences, including sound quality. While this is extremely helpful and informative, it is also important to have a structured methodology to benchmark against previous technology as well as other current hearing aids in order to know that sound quality goals have truly been met. As a supplement to the purely subjective evaluations of trial participants, results from a more formalized procedure provide strong evidence for excellent sound quality.

ReSound has worked closely with DELTA SenseLab to develop a structured, unbiased method for validating sound quality during hearing aid development. Delta SenseLab
is an independent test laboratory specialized in performing listening tests in a variety of domains. The methodology is inspired by the food and fragrance industry, which uses sensory panels consisting of trained assessors to evaluate products based on methodologies that are well-established within food science. The idea is that methodologies used to assess the sensory domains of taste and smell can be transferred to other sensory domains such as hearing. The methodology is double blinded in that neither the assessors nor the tester know which conditions are presented. This is important to eliminate biases. The methodology has become the preferred means for hearing aid manufacturers to investigate hearing aid sound quality.

DOCUMENTING THE SOUND QUALITY OF RESound LINX QUATTRO

For any hearing aid, the sound processing algorithms tend to be given the starring role in determining the overall sound quality. To be sure, they do play an essential role, but the hearing aid hardware and components, electroacoustic design, and the processing platform itself are just as important. For inputs other than the acoustic microphone, the delivery of the signal to the hearing aids is also a sound quality contributor. For example, if the signal is delivered via wireless streaming, then the streaming protocol has a significant impact on the audio quality. Wireless streaming protocols are not yet standardized for hearing aids, so no assumptions can be made as to how different hearing aids with streaming capabilities compare. For this reason, structured sound quality evaluations for ReSound LiNX Quattro were carried out with both acoustic and streaming inputs to capture a complete picture of its performance. Specifically, the research questions addressed how ReSound LiNX Quattro sound quality compares to other premium hearing aids for:

- Various daily sounds picked up acoustically via the microphones
- Music picked up acoustically via the microphones
- Streaming of music and other sounds direct from the iPhone
- Streaming of music and other sounds via the proprietary TV streaming accessory

METHODS

Three experiments were carried out using the Delta Sense-lab methodology. The first one focused on general hearing aid sound quality in the default hearing aid program using the acoustic microphones. The second experiment tested hearing aid sound quality when listening to music using the hearing aid’s proprietary music program acoustically. The third validated streamed sound quality. The third experiment tested hearing aid sound quality when listening to music using the hearing aid’s proprietary music program acoustically. The third validated streamed sound quality. Table 1 provides an overview of the testing that was carried out.

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Conditions</th>
<th>Method</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td>General sound quality</td>
<td>Participants listened to varying sound scenarios</td>
<td>Ranking</td>
</tr>
<tr>
<td>Experiment 2, part 1</td>
<td>Validation of specialized settings for music</td>
<td>Participants listened to music with default All-Around program, Music program, and with streaming inputs</td>
<td>Paired comparison</td>
</tr>
<tr>
<td>Experiment 2, part 2</td>
<td>Sound quality for music</td>
<td>Participants listened to music in a dedicated music program</td>
<td>Paired comparison</td>
</tr>
<tr>
<td>Experiment 3, part 1</td>
<td>Sound quality for streaming</td>
<td>Participants listened to varying sounds streamed from an iPhone</td>
<td>Paired comparison</td>
</tr>
<tr>
<td>Experiment 3, part 2</td>
<td>Sound quality for streaming</td>
<td>Participants listened to varying sounds streamed via a proprietary TV streamer accessory</td>
<td>Paired comparison</td>
</tr>
</tbody>
</table>

Table 1: Overview of sound evaluations that were carried out to validate ReSound LiNX Quattro sound quality.
Ten experienced hearing aid users (8 male and 2 female; mean age 73 years) participated as assessors in Experiment 1 and Experiment 2. Fifteen experienced hearing aid users (9 male and 6 female; mean age 72 years) participated in Experiment 3. All participants had a moderate hearing loss within 10 dB of the mild-to-moderately sloping N3 hearing loss. They had all qualified for participation in the sound quality evaluation via performance on various discrimination tests.

ReSound LiNX Quattro receiver-in-the-ear (RIE) hearing aids with medium power receivers and five other premium hearing aids mounted with similar power receivers were included. All hearing aids were programmed to the manufacturer’s default settings for the N3 hearing loss in all three experiments. To minimize bias, overcome auditory memory limitations, and allow participants to easily listen multiple times to the stimuli, the evaluation was done using recordings made with the hearing aids. Table 2 provides an overview of the recording conditions for each experiment.

<table>
<thead>
<tr>
<th>Listening program</th>
<th>Sounds</th>
<th>Hearing aids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td>Default program</td>
<td>Eight everyday sound scenarios</td>
</tr>
<tr>
<td>Experiment 2, part 1</td>
<td>ReSound Quattro default program, Music program, streaming program</td>
<td>Pop music</td>
</tr>
<tr>
<td>Experiment 2, part 2</td>
<td>Music program</td>
<td>Pop music</td>
</tr>
<tr>
<td>Experiment 3, part 1</td>
<td>Streaming program with input from iPhone</td>
<td>Speech, music, traffic scene</td>
</tr>
<tr>
<td>Experiment 3, part 2</td>
<td>Streaming program with input from TV streamer</td>
<td>Speech, music, traffic scene</td>
</tr>
</tbody>
</table>

Table 2. Overview of the recordings that were made to serve as stimuli in each of the experiments.

Recordings and presentation
The sound scenarios for all the variations shown in Table 2 were recorded through each of the hearing aids placed on a Brüel & Kjaer Head and Torso Simulator (HATS) placed in the center of a calibrated multichannel loudspeaker setup in a sound booth. The loudspeakers were calibrated individually to have a flat frequency response and equal overall levels measured at the listener’s (HATS) position. To ensure that the hearing aids were fully adapted to the sound scenario, each scenario was played twice in the recording phase. It was assumed that the hearing aid would adapt during the first presentation and that the recording from the second presentation would be a fair representation of the sound for the product evaluations. The recordings were compensated for the HATS ear canal (ERP-DRP) and headphone frequency response.

During the tests, participants listened to the test stimuli reproduced at calibrated level over Sennheiser HD650 headphones and with the participants seated in a quiet fitting room. The background noise levels were below those defined in ISO 8253-1 (2010) for air conduction audimetry.

Procedures
For the first experiment, participants evaluated the hearing aids using a visual analog scale where they indicated to what degree they liked or disliked the sound. As shown in Figure 1, the anchors of the scale were “Extremely like” and “Extremely dislike”. Each participant was instructed prior to the evaluation both in writing and verbally in order to ensure a correct understanding of the task. While listening, the participant could switch among the recordings being compared, without interrupting playback. The sequence of the hearing aids being tested was anonymous and randomized to avoid order effects.

In the second and third experiments, a paired comparison method was used. Similar to the first study, participants were able to switch back-and-forth between the two recordings that were to be compared and to listen to each as many times as they wanted. The same procedures were followed in terms of participant instruction and randomization of presentation.
Statistical analysis
For experiment 1, a Tukey honest significance test was used to detect significant differences among mean ratings at a significance level of p<0.05. For experiments 2 and 3, a binomial test at a significance level of p<0.05 was used to detect significant differences in percentages of preferences.

RESULTS AND DISCUSSION
Experiment 1
The first study focused on overall sound quality preference in the default hearing instrument program with the acoustic microphones. Figure 3 shows the results for all preference judgments compiled. When examined in this way, two things are apparent. First of all, since participants were not required to use the entire scale, averaged ratings tended to group in the middle of the scale, and the distributions of the ratings were small. This reflects that overall, participants did not “extremely like” or “extremely dislike” any of the hearing aids evaluated. Secondly, there were no significant differences among hearing aids in the summed ratings, except that A was rated significantly higher than C. In general, C trended lower than any of the other devices. Along with B, it was the only device whose overall ratings put it in the “dislike” half of the rating scale. Compared to other sound quality evaluations using this methodology, participants were not required to “anchor” their evaluations by selecting one condition as “like most” and one as “like least”. While this has the advantage of allowing listeners to make nuanced judgments of each condition individually, it does not force them to make preference choices among the hearing aids tested. Thus, actual preferences can be obscured to some extent. In other words, although the summed data suggest that the participants liked the overall sound quality of the hearing aids tested approximately equally (except for C), it is not known whether - if asked to choose - a favorite would have emerged.

The results as presented in Figure 3 give an overall impression that most premium hearing aids today provide good sound quality viewed over a range of different types of sounds. A disadvantage of examining the results this way is that it can conceal possible preference trends for specific types of sounds. When examining results for each individual sound type, ReSound LiNX Quattro was consistently rated in the neutral or “like” part of the scale, with three particular sounds rated very highly on the scale. These were three very different types of sounds: speech, percussive music and a traffic scene. When results for these sound scenarios are considered by themselves, ReSound LiNX Quattro was rated significantly higher than B and C (Figure 4).

Another consideration is the range in the averaged ratings for the different sound scenarios. A low range means that the sound quality was rated consistently. A higher range means that sound quality rating differed to a greater extent depending on the sound scenario. As shown in Figure 5, the range of ratings was only about 1 scaling unit for ReSound LiNX Quattro. The ranges in ratings for the other devices tested were greater in all cases. This suggests that sound quality perception may vary more depending on the particular sound for other hearing aids than for ReSound LiNX Quattro.
Experiment 2
This study focused on hearing instrument preference when listening to pop music. As discussed in the companion paper, music is a challenging signal for hearing aids to amplify without introducing distortion and artifacts. In addition, many people listen to music at higher levels than are typical of most daily listening environments, which makes matters even worse. Therefore, if hearing aids are experienced positively in terms of music listening, this represents an ultimate proof point for sound quality.

The first part of experiment 2 validated that the dedicated Music program, as well as the streaming options, are preferred for intentional music listening. This is an interesting question because music listening differs from general hearing aid use in that the focus is on the transparency of the hearing aid to reproduce the music with as much fidelity as possible. The Music program and to some extent the streaming solutions disable special features that are intended to improve speech understanding and increase listening comfort. The intent is to increase transparency. The results showed a significant preference for listening to music using the ReSound LiNX Quattro Music program and using streaming through the iPhone and TV streamer over the default All-Around program. There were no differences in preferences for listening to music with the Music program versus streamed via the iPhone or TV Streamer. These results indicate that when users want to enjoy live or recorded music, the specialized settings of the Music program and the streaming options all can enhance the experience.

The acoustic differences between speech and speech-in-noise signals and music are well-known, as are the ways in which hearing aids potentially can disturb the way music sounds. Therefore, it is likely that most hearing aid manufacturers follow similar principles in setting their dedicated music programs. The second part of experiment 2 investigated preferences when listening to pop music using the Music program in the ReSound LiNX Quattro compared to two other premium hearing aids with dedicated music programs. Because music program settings for each device would be based on a rationale of preserving transparency, this comparison would be the most fair when music is the stimulus. In this experiment, a clear preference was demonstrated for ReSound LiNX Quattro. Ninety percent of the participants preferred ReSound LiNX Quattro over hearing aid B, while 100% preferred ReSound LiNX Quattro over hearing aid A. This reflects extremely well on music listening with ReSound LiNX Quattro, but is also of interest for another reason. The other two hearing aids tested automatically change to their music programs when music is identified by the environmental classification system. It has been shown that the presence and detection of music in an environment by an environmental classifier may be somewhat at odds with how listeners might classify the same environments. In a complex environment where music is only one element, it may conflict with a user’s listening goals to prioritize music listening settings. Because it is not possible for the hearing aids to know with any degree of certainty whether detected music is of interest to the hearing aid user at any given moment, ReSound has chosen to provide opportunities for the hearing aid wearer to purposefully choose music listening when desired.

Experiment 3 – MFi streaming
In the first part of experiment 3 comparisons were made for audio streamed directly from an iPhone with the iOS music app to the hearing aids. ReSound LiNX Quattro was compared to each of the other hearing aids one at a time, and test participants chose which they preferred in paired comparisons. As noted in Table 2, three audio clips were streamed to the hearing aids including rhythmic music, speech and a traffic scenario. Overall, ReSound LiNX Quattro was preferred in 64% of the total trials compared to the four other hearing aids that were capable of streaming from an iPhone (hearing aids B, C, D and E). Participants preferred audio streamed from an iPhone with ReSound
LiNX Quattro over hearing aid B 67% of the time, which is a significant preference. Participants preferred ReSound LiNX Quattro over hearing aid C 58% of the time, and hearing aid D 56% of the time. Neither of these findings reached statistical significance. ReSound LiNX Quattro was also significantly preferred over hearing aid E 76% of the time. In all, participants preferred the sound quality of streaming via MFi 64% of the time compared to other MFi hearing aids.

It is not surprising that ReSound LiNX Quattro was preferred for MFi streaming. Because ReSound collaborated with Apple in creating the proprietary streaming protocol that Apple now offers to all hearing aid manufacturers, ReSound is given unique access to a wider frequency streaming bandwidth (see Groth1 for bandwidth measurements). The additional high frequency amplification may contribute to more full and clear sound quality perceived by the participants.

Experiment 3 – TV streamers
As mentioned, variability in sound quality can be expected as a function of the communication protocol used for streaming via the proprietary TV Streamers offered by different manufacturers. ReSound was the first manufacturer to enable streaming direct from a TV Streamer to hearing aids in high quality stereo and continues to use this technology. Because the signal bandwidth extends to 10 kHz, ReSound LiNX Quattro is the first ReSound hearing aid that can fully reproduce the signal. In the current test, the participants showed a significant preference for ReSound LiNX Quattro over hearing aid A and its proprietary streamer 84% of the time. Resound LiNX Quattro was also preferred by a significant margin over hearing aids B and C. Although ReSound LiNX Quattro was preferred 60% of the time over hearing aid D and its TV streamer, this difference was not statistically significant. Overall, participants preferred the sound quality of streaming via the ReSound wireless TV streamer 71% of the time compared to other premium hearing aids and their proprietary TV streamers.

SUMMARY
Sound quality is an important attribute for hearing aid users and is considered in hearing aid selection by HCPs. It is therefore a priority for hearing aid manufacturers to consider how to ensure and validate that good sound quality is achieved in product development. In addition to unstructured subjective feedback from users, ReSound relies on formalized methods of benchmarking sound quality with as little bias as possible. Results from such evaluations with experienced hearing aid users have shown sound quality with ReSound LiNX Quattro is in some cases equivalent to, and in many cases preferred over the sound quality of other premium hearing aids. In particular, when listening acoustically with the hearing aid microphones ReSound LiNX Quattro is consistently judged positively and is especially advantageous for music listening. When listening via streaming from either the iPhone or via the proprietary TV streamer, ReSound LiNX Quattro sound quality is preferred compared to other hearing aids. Taken together, these results support the clearer, fuller and richer sound experience provided by ReSound LiNX Quattro.
REFERENCES

