The semiconductor-based Protection ICs eFuse provide highly integrated functionality in compact-size packages. They offer protection against overcurrent, overvoltage, undervoltage, overtemperature, reverse current as well as inrush protection in Hot-swap and Hot-plug events.

Benefits

Accuracy and Integration
Provides highly accurate current limiting, faster response time, and more integrated protection, sensing and control features than traditional fuses and PTCs

Programmable and Customized Designed to Your Request
Incorporates more flexibility such as adjustable overvoltage threshold, current limiting, and inrush current, along with true reverse current blocking compared to conventional power switches

Speed Up Time to Market
Improves product reliability, increased battery life, lower repair costs, and lengthened overall product lifetime.

Easy System for Quick Understanding
Easy naming rules for understanding products specification such as operation voltage, current, package type and key functions.

Overview

Figure 1. Protection ICs eFuse Function Block Diagram

- **Power Supply**
- **Control Logic**
- **Load + R_L**

Features

Over Current Protection
Once the load current reaches the current limit \(I_{\text{LIMT}} \) programmed by \(I_{\text{LIMT}} \) pin, input current will be automatically reduced to the programmed level to satisfy the limited input power.

Over Voltage Protection
Protects the system from being stressed by excessive high voltage. Once it detects input voltage is higher than the built-in over-voltage threshold, it will immediately turn off and clamp the voltage.

Under Voltage Lockout (UVLO)
UVLO feature disconnects the load from the supply if the input voltage is lower than the threshold to avoid issues caused by an insufficient supply voltage.

Over Temperature Protection
When the device temperature \(T_J \) exceeds \(T_{SHDN} \), the thermal shutdown circuitry shuts down the internal MOSFET, thereby disconnecting the load from the supply. The Protection IC will remain off during a cooling period until the device temperature falls below \(T_{SHDN} \), after which it will attempt to restart.

Soft Start
Provides the output voltage slew rate control that can limit the inrush current, and an external capacitor can configure the soft start duration.

Reverse Current Blocking
Detects when there is a higher system output voltage than the system input voltage, blocking backward current flow through the system.

Figure 2. Easy Naming System Example

- **Part Numbering**
- **Operation Voltage**
- **Current**
- **Package Type**
- **EF: eFuse + OVP**
- **EV: eFuse + OVP + Fault indicator**

Figure 3. Illustration Diagrams

- **Fast Trip**
- **Over Completion**
- **Auto-retry**
- **Thermal Shutdown**
- **Thermal Shutdown Recovery**
- **Inrush Current**
- **Soft Start**
- **Reverse Current**
Applications

The Protection ICs eFuse are ideal for Power Line Protection, Hot-swap, and hot-plug protection as well as protecting current limiter and circuit breaker.

Below is a list of the end equipment’s examples.
- Type-C Adapter
- Networking/Datacom
- Notebook/PC Desktop
- TV/Monitor
- Set Top Box
- Smart Phone
- Industry
- Solid-state Drive (SSD) / Hard Disk Drive (HDD)
- Enterprise Server
- Programmable Logic Control (PLC)
- Battery System
- Telecom
- Appliance
- Tablets

Available Parts

<table>
<thead>
<tr>
<th>Nominal Voltage</th>
<th>Part Number</th>
<th>Operation Voltage Range</th>
<th>Vmax</th>
<th>Continuous Current</th>
<th>Ron (mΩ)</th>
<th>Over Current Protection</th>
<th>Over Voltage Protection</th>
<th>Over Temperature Protection</th>
<th>Reverse Blocking</th>
<th>Soft Start</th>
<th>Output Discharge</th>
<th>Package</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V</td>
<td>LS0505EVD22</td>
<td>2.7 ~ 6</td>
<td>30</td>
<td>5 (Prog*)</td>
<td>50</td>
<td>1 – 5 (Prog*)</td>
<td>6.2</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>DFN2x2_8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS0504EVT233</td>
<td>2.7 ~ 6</td>
<td>30</td>
<td>4</td>
<td>50</td>
<td>4</td>
<td>6.3</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>SOT23-3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS0504EDD12</td>
<td>1.8 ~ 5.5</td>
<td>6</td>
<td>4</td>
<td>26</td>
<td>4.5</td>
<td>6.3</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>DFN1.2x1.6_4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS05006VPQ33</td>
<td>0.5 ~ 5.5</td>
<td>28</td>
<td>0.6</td>
<td>250</td>
<td>No</td>
<td>6 (ICC) 4.5 (SBU)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>QFN3x3_20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS0502SCD33</td>
<td>2.5 ~ 5.5</td>
<td>18</td>
<td>2</td>
<td>100</td>
<td>(Prog*)</td>
<td>6</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>DFN3x3_10</td>
<td></td>
</tr>
<tr>
<td>12V</td>
<td>LS1205EVD33</td>
<td>2.7 ~ 18</td>
<td>20</td>
<td>5 (Prog*)</td>
<td>25</td>
<td>1 – 5 (Prog*)</td>
<td>3.8/5.7/14.4</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>(Prog*)</td>
<td>DFN3x3_10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS1205EDD33</td>
<td>2.7 ~ 18</td>
<td>20</td>
<td>5 (Prog*)</td>
<td>25</td>
<td>1 – 5 (Prog*)</td>
<td>14.4</td>
<td>Yes</td>
<td>No</td>
<td>(Prog*)</td>
<td>Yes</td>
<td>DFN3x3_10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS12052BD33</td>
<td>2.7 ~ 18</td>
<td>20</td>
<td>5</td>
<td>25</td>
<td>1 – 5</td>
<td>14.4</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Control pin</td>
<td>DFN3x3_10</td>
<td></td>
</tr>
<tr>
<td>24V</td>
<td>LS2406ERQ23</td>
<td>3 ~ 24</td>
<td>30</td>
<td>6 (Prog*)</td>
<td>24</td>
<td>1 – 6 (Prog*)</td>
<td>(Prog*)</td>
<td>Yes</td>
<td>Yes</td>
<td>(Prog*)</td>
<td>Yes</td>
<td>QFN2.5x3.2_16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS2406IDD23</td>
<td>2.7 ~ 24</td>
<td>28</td>
<td>5</td>
<td>35</td>
<td>-</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>DFN2x3_8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LS24062RQ23</td>
<td>3 ~ 24</td>
<td>30</td>
<td>6</td>
<td>24</td>
<td>1 – 6</td>
<td>5~24</td>
<td>Yes</td>
<td>(Yes Bidirectional)</td>
<td>(Prog*)</td>
<td>Yes</td>
<td>QFN2.5x3.2_16</td>
<td></td>
</tr>
</tbody>
</table>

Note: Prog* means “Programmable”.

Table 1. Parts List

Table 2. Parts Key Feature Description

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Key Feature Description</th>
<th>Evaluation Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS0505EVD22</td>
<td>30 V Max Rating, Programmable Current Limit</td>
<td>Available</td>
</tr>
<tr>
<td>LS0504EVT233</td>
<td>30 V Max Rating, Simple Pin-count</td>
<td>-</td>
</tr>
<tr>
<td>LS0504EDD12</td>
<td>Low Ron Small Package</td>
<td>Available</td>
</tr>
<tr>
<td>LS05006VPQ33</td>
<td>Type-C CC/SBU OVP and ESD</td>
<td>-</td>
</tr>
<tr>
<td>LS0502SCD33</td>
<td>SuperCap Management and Protection</td>
<td>Available</td>
</tr>
<tr>
<td>LS1205EVD33</td>
<td>3.8 V / 5.7 V / 14.4 V OVP Programmable Current Limit</td>
<td>Available</td>
</tr>
<tr>
<td>LS1205EDD33</td>
<td>14.4 V OVP Programmable Current Limit</td>
<td>-</td>
</tr>
<tr>
<td>LS12052BD33</td>
<td>14.4 V OVP Programmable Current Limit</td>
<td>Available</td>
</tr>
<tr>
<td>LS2406ERQ23</td>
<td>Programmable OVP / OCP, Reverse Blocking</td>
<td>Available</td>
</tr>
<tr>
<td>LS2406IDD23</td>
<td>Ideal Diode</td>
<td>Available</td>
</tr>
<tr>
<td>LS24062RQ23</td>
<td>Programmable OVP / OCP Bi-directional</td>
<td>Available</td>
</tr>
</tbody>
</table>

Figure 4.

Protection ICs eFuse Feature Sets and Applications

Figure 5.

LS0502SCD33 EV Board

For more details about these Evaluation Boards, please contact your Littelfuse local sales.